

Subassembly to Full Assembly: Effective Assembly Sequence Planning through Graph-based Reinforcement Learning

Chang Shu, Anton Kim, and Shinkyu Park

King Abdullah University of Science and Technology (KAUST), Saudi Arabia (chang.shu@kaust.edu.sa)

KAUST Robotics, Intelligent Systems, and Control Lab

A Combinatorial Problem

For *N*-part assembly,

- # assembly sequences = N! ۲

Feasibility Constraints

- Collision-free
- Structural stable

Similar to the Traveling Salesman Problem				
ASP	TSP			
assemble all the parts	visit all the cities			
each part assembled once	each city visited once			
start from the non-assembly	start from any city			
stop at the full assembly	stop at the starting city			

Representing Assembly Sequences on Graphs

Assembly Problem Instance \mathcal{P}

- $\mathcal{P} = \{p_1, p_2, \dots, p_M\}$
- The directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- **Node** $v \subset 2^{\mathcal{P}}$: a subassembly
- Edge $(u, v) \in \mathcal{E}$: an assembly step
- $|\mathcal{V}| = N = 2^{M}, |\mathcal{E}| = M \cdot 2^{M-1}$
- **Markov Decision Process**
- **State** $s_t = v$: a subassembly
- Action $a_t = v \cup \{p\}, p \in \mathcal{P} \setminus v$: adding a new part to the current state
- **Transition** $P(s_{t+1}|s_t, a_t)$
- **Reward** $r_t = R(s_t, a_t)$: 1 if complete the assembly, -1 if lead to dead end, and 0 otherwise

Delayed Reward Assignment

Simulation	Current Step	Full Assembly	Reward W/O Delay	Reward W/ Delay
	Feasible	Feasible	0	0
	Feasible	Feasible	0	0
	Feasible	Infeasible <mark>Stop Early</mark>	0	-1
	Feasible	Infeasible	0	/
	Infeasible Dead End	Infeasible	-1	/

Experimental Results

Comparison with baseline methods

4 part

Simulation •

Generalization across problem sizes

Test \rightarrow	Success Rate (%)			
Train ↓	M=4	M=5	M=6	M=7
M=4	-	80.14	61.98	54.95
M=5	91.38	-	67.61	63.01
M=6	92.41	84.36	-	72.88
M=7	92.93	86.21	73.47	-

Real world •

